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A unique method for describing and establishing the reaction scheme of a multicomponent
phase diagram is proposed in terms of graph theory. A geometrical representation of the
connections between invariant reactions is considered as the basis to introduce the matrix
formula of a graph that models a reaction scheme; then the number of all possible reaction
schemes is enumerated. With a matrix operation, the most probable (full or partial) reaction
scheme(s) can be selected within available experimental data. A ternary phase diagram was
chosen as an example to show how to relate with experimental data. It is also shown that the
number of invariant reactions in a ternary phase diagram can be expressed as a function of the
numbers of binary and ternary phases.
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1. Introduction

Various techniques for microstructural control can be
applied to alloys composed of various elements due to their
higher degree of freedom affecting phase equilibria in mul-
ticomponent phase diagrams. Therefore, for establishing a
suitable heat-treatment process for a certain alloy system, a
temperature-composition phase diagram shows the phases
of components, and this will provide information to control
the microstructural evolution process of alloys. Although
various phase diagram calculation methods have been de-
veloped and progressed, such as Calphad-type methods or
first principle calculation methods, their applications are
still limited due to the difficulties in evaluating the thermo-
dynamic properties of phases. Therefore, the importance of
experimental work is still important for the establishment of
phase diagrams. However, it is generally very difficult, elu-
sive, and time-consuming to develop even a part of an iso-
thermal or isoplethal section of a ternary phase diagram.
The difficulties are caused by not only the complicated re-
lationship among phases at each temperature (an isothermal
section) but also by the complicated relationship between
isothermal sections in a high dimensional space even under
a constant pressure condition.

Reaction schemes (Scheil reaction schemes) or flow
diagrams have been used to simplify the presentation of

complex multicomponent diagrams [1994Con]. With an es-
tablished reaction scheme, an equilibrium ternary or multi-
component phase diagram is more easily constructed
through experimental work. However, it is not easy to man-
age and evaluate the reliability of the reaction scheme be-
cause even the number of candidates for a reaction scheme
is not known.

The aim of this study is to apply graph theory for the
description of reaction schemes. It will be shown that this
mathematical expression enables one to take into account all
the available but fragmentary data obtained by various and
individual experiments for construction and evaluation of a
reaction scheme. In this article, a ternary phase diagram at
a certain pressure is picked as an example.

2. Outline of the Mathematical Method

2.1 Description of a Reaction Scheme in Terms of Graph
Theory

According to Gibbs Phase Rule, it is deduced that four is
the maximum number of phases coexisting at a highest-
order equilibrium (i.e., an invariant reaction) in any ternary
system at constant temperature and constant pressure. In a
reaction scheme, each invariant reaction is connected to
“monovariant lines” that represent the next highest-order
equilibrium among three phases chosen from four phases
related to the corresponding invariant reaction. That is to
say, a reaction scheme for a ternary phase diagram accounts
for the interrelations among three- and four-phase equilib-
ria. The number of next highest-order equilibria related to
an invariant reaction can be counted to be:

�4

3� = 4

Therefore, each invariant reaction can be expressed as a
point where four monovariant lines flow in or out. Figure
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1 shows such relationships among a liquid phase and three
solid phases. Monovariant lines including a liquid phase are
referred to as “flow lines ” or “flow pipes. ”

Theoretically, there are 25 kinds of invariant reactions
for ternary systems [1966Pri], and each next highest-order
equilibrium originates a binary or a pseudobinary phase
diagram regardless of whether it is a eutectic, a peritectic, a
eutectoid, or another reaction, or a ternary invariant reac-
tion. The authors applied graph theory to reaction schemes,
in which every invariant reaction includes one liquid phase
and three different solid phases, shown in Fig. 1. Ternary
peritectic reactions are (a) and (b), eutectic reaction is (c),
and (e) and (f) are remelting reactions in ternary system,
respectively, but (d) is a forbidden reaction. With these
invariant reactions, one can describe the connection of flow
lines that are monovariant reactions.

Figure 2 shows (a) a flow-line network in a ternary phase
diagram, (b) a part of the corresponding reaction scheme,
and (c) its topological expression. Invariant reactions
are represented by points (No. 17-22) connected with four
other points. Each of the ternary invariant reactions is ac-
companied with a three-solid phase field (No. 28-33), which
appears in the isothermal section of the ternary phase
diagram at low temperature, as shown in Fig. 2(d). There-
fore, in such a simple ternary phase diagram, solid phases
related to an invariant reaction correspond to the phases
appearing in the three-solid phase field. Then, a set of
phases related to each of four monovariant lines can be
deduced by choosing three phases out of four. Therefore, a
common monovariant reaction connects two invariant reac-
tions.

Solid lines start from binary invariant reactions (No. 1-
8). In some of the ternary phase diagrams pseudobinary
invariant reactions appear between invariant reactions
[1995Vil, 2001Miu]. Figure 3 shows a schematic drawing
of a pseudo-binary reaction found in the Ni-Al-Zr system
just beside the Ni-Zr binary edge [2001Miu]. The possible
pseudobinary invariant reactions are represented by points
(No. 9-16, 23-27) in Fig. 2(b). Such reactions are quite few
in number, but they significantly affect solute distributions
in the microstructure during solidification; this may cause
cracking of products formed by casting.

As can be seen in Fig. 2, monovariant reactions con-
nect all of the invariant reactions, including binary and
pseudo-binary reactions. Therefore, a mathematical way to
express connection of neighboring points is useful for rep-
resenting a reaction scheme. In graph theory, a network is
described so that the lines called edges are connected at
points called vertices, as can be seen in Fig. 4 [1967Kau]. A
graph is an abstract object, but graphs can be used to rep-
resent structures of quite diverse nature, such as electric
circuits, the rules of certain games such as chess or check-
ers, the ranking of participants on a tournament, etc.
[1972Gar]. Therefore, graph theory is suitable for express-
ing reaction schemes as graphs in which vertices and
edges correspond to invariant reactions and flow lines, re-
spectively.

A reaction scheme represents the relation among invari-
ant reaction temperatures by oriented lines connected at two
invariant reactions to show which reaction occurs at a
higher temperature. To describe a realistic reaction scheme
for a ternary phase diagram, a concept of oriented (direct)

Fig. 1 Six classes of four-phase equilibrium as examples: (a) pattern containing three flow lines flowing into and a Class I ternary
four-phase equilibrium, i.e., ternary eutectic; (b) pattern containing two flow lines flowing into and a Class II ternary four-phase equilibrium;
(c) pattern containing one flow line flowing into and a Class III ternary four-phase equilibrium, i.e., ternary peritectic; (d) exclusive class
for the four-phase equilibrium in the ternary phase diagram; (e) example of metatectic reaction in ternary phase diagram; and (f) other
example of metatectic reaction in ternary phase diagram.
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graph is introduced to take the invariant reaction tempera-
ture into account. Illustrated in Fig. 4 is a concept of an
oriented graph [1967KAU, 1972GAR]. In an oriented
graph, each edge is represented by a line with an arrow
to indicate its orientation (Fig. 4a). The existence of arrows
is expressed as aij � 1, which means that an edge connect-
ing two vertices i and j is oriented a way from vertex
i toward vertex j. As presented in Fig. 4 (b), a set of
aij forms an adjacency matrix R for an oriented graph, which
expresses the interrelation between vertices. Figure 4(c)
is an adjacency matrix expression of the flow lines in
the reaction scheme shown in Fig. 2(c). It is obvious
that there is no inconsistency between the reaction
scheme and the matrix representation. We can conclude that
an adjacency matrix R completely expresses a reaction
scheme.

2.2 Expression of a Reaction Scheme of a Ternary Phase
Diagram in Terms of Graph Theory

It is shown in Sec. 2.1 that the reaction scheme of a phase
diagram of concern is developed by taking the relationship
among the invariant reaction temperatures into account. All
candidates should be examined to obtain the most rational,
appropriate reaction scheme. Therefore, as the basis, all of
the possible adjacency matrices R, as the candidates for the
reaction scheme, are needed. For such a purpose, the num-
bers of monovariant, invariant, and pseudo-invariant reac-
tions are required because the numbers of the reactions in
any ternary phase diagrams can be decided by Euler’s theo-
rem on polyhedra, as a function of the number of phases.

As mentioned above, in the simplest case consisting of
only ternary eutectic and/or peritectic reactions, each three-

Fig. 2 (a) Example of the flow-line network in a ternary phase diagram. (b) Interconnection of flow lines shown as a part of the
geometrically transformed phase diagram. (c) Network of flow lines and vertices, which correspond to ternary, binary, and pseudo-binary
invariant reactions. (d) Isothermal section of the ternary phase diagram at low temperature.
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solid phase field existing in an isothermal section at a low
temperature corresponds to a four-phase equilibrium.
Therefore, the number of three-phase equilibria is needed.
Figure 5(a) shows a schematic projection of such a ternary
system with eight phases, and Fig. 5(b) shows an 8th convex
polygon as a simplified expression of the ternary phase
diagram shown in Fig. 5(a). Through this operation, the
compositional information such as the solubility of elements
in phases and the width of each two-phase regions are lost.
An nth polygon can be divided into a number of triangles
as shown by examples in Fig. 5(c) for the case of n � 8.
This operation is termed “triangulation” or “simplicial de-
composition.” Each of the triangles represents a three-solid
phase field. A similar method was also proposed by Slyu-
sarenko et al. [1999Slu, 2001Sof] for the representation of
phase relationships in isothermal sections of multicompo-
nent systems in terms of the graph method.

In Fig. 5(c), apices, sides, and triangles in the nth
polygon correspond to an invariant reaction in binary, pseu-
dobinary, and ternary systems, respectively. The number of
each of them is needed as a function of n for applying the
concept for the description of the reaction schemes in the
form of the adjacency matrix. By Euler’s theorem [1997Fur]
on polyhedra (Appendix 1), it can be deduced that the num-
bers of sides, diagonal lines, and triangles are n, (n − 3), and
(n − 2), respectively, in any case. The number of vertices
between binary and neighboring ternary invariant reactions
is n, which also corresponds to possible pseudobinary reac-

tions, as is observed in the Ni-Al-Zr system shown in Fig. 3
[2001Miu]. Thus, the number of vertices in an adjacency
matrix R for an nth polygon:

n + n + (n − 3) + (n − 2) � 4n − 5 (Eq 1)

Therefore, we should consider an adjacency matrix R of
[(4n − 5) × (4n − 5)] to describe the relation among (4n −
5) vertices in any of the reaction schemes for the nth poly-
gon completely. The number of vertices (4n − 5) is 27 for
the case n � 8, and the adjacency matrix R is (27 × 27) in
size. Each of No. 28-32 corresponds to a three-solid phase
field, not an invariant reaction. An adjacency matrix R
shown in Fig. 4(c) corresponds to a ternary phase diagram
shown in Fig. 2.

For ternary phase diagrams having several ternary com-
pounds, a similar mathematical treatment can be accom-
plished by extending the above discussion. The ternary
phase diagram with a ternary compound is represented by
an nth polygon having a point inside. As this point is a
component of ternary phase equilibria, it is necessary to take
it into account for the triangulation of the geometrical figure
shown in Fig. 6. Similarly the number of sides, diagonal
lines, and triangles can be deduced by Euler’s theorem on
polyhedra (Appendix 2 [1997Fur]). Those are n, (3m + n −
3) and (2m + n − 2), respectively, for a ternary sys-
tem with m of ternary compounds. Therefore, one should
consider an adjacency matrix R of [(5m + 4n − 5) × (5m +
4n − 5)].

2.3 Inspection of Paths Among Vertices by Operation of an
Adjacency Matrix for Establishing a Reaction Sheme

As mentioned above, the numbers of phases, n and m, are
the keys to the adjacency matrix expression. We shall dis-
cuss the simplest case without ternary compounds in detail.
In the case, there are (4n − 6) edges corresponding to the
monovariant lines in the ternary system with n of phases.
Therefore, an adjacency matrix R of [(4n − 5) × (4n − 5)] is
filled with (4n − 6) of numeral 1 and the rest are all numeral
0 to represent a reaction scheme. Then, all of the hypotheti-
cal reaction schemes can be provided by filling each of aij
by (4n − 6) of numeral 1 (see Appendix 3 for detail).

For the establishment of the reaction scheme of concern,
it is necessary to present the relationship among all the
invariant reactions, not only between the neighboring ones.
To investigate connections from one invariant reaction to
the others through several invariant reactions, multiplication
of an adjacency matrix R for an oriented graph is useful. A
matrix R2 (�R × R) has a set of elements a�ij:

a�ij = �
h

�aih × ahj� (Eq 2)

If both aih and akj in the adjacency matrix R are 1 for a
certain vertex h, a�ij � 1, and vertices i and j are connected

Fig. 3 Schematic drawing of Ni-Al-Zr phase diagram near Ni-Zr
binary edge, which includes a pseudobinary invariant reaction ap-
pearing as a ridge between the binary invariant reaction on Ni-Zr
binary edge and the ternary invariant reaction
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by two edges via the vertex h (Fig. 7). In the matrix R2,
a13 � 1. This means there is a route from vertex 1 to vertex
3 through two of oriented edges. The kth power of the

adjacency matrix R, Rk, provides information whether the
graph has a path from one vertex to another through k of
oriented edges. This idea enables one to examine whether

Fig. 4 (a) Oriented graph and (b) corresponding adjacency matrix R. (c) Adjacency matrix expression of the phase diagram shown in
Fig. 2
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a certain invariant reaction is located downstream of another
invariant reaction in a reaction scheme. For such a purpose
a matrix S provided by following method is useful:

S = R + R2 + R3 + R4 + � � � + Rkmax = �
k=1

kmax

Rk (Eq 3)

where kmax � (n − 2) × 2 + 2 � (2n − 2) for any nth
polygons, which is calculated from numbers of ternary in-
variant reactions and pseudobinary reactions. Hereafter, the
matrix S is referred to as an integrated adjacency matrix.
Figure 8 represents the integrated adjacency matrix S cor-
responding to the reaction scheme shown in Fig. 2. An
element aij � 1 in the integrated adjacency matrix S means
the temperature for an invariant reaction represented by ver-
tex i is higher than that represented by vertex j in a reaction
scheme. Once an adjacency matrix R is given, the integrated
adjacency matrix S can be obtained by matrix operation.

It is obvious that such comparisons between the elements
aij in the integrated adjacency matrix S and experimental
data enables us to take all information into account for
excluding improper adjacency matrices. Then the most
promising reaction scheme can be selected in conjunction
with binary phase diagrams and fragmentary ternary data sets
obtained by experimental studies.

3. Discussion

3.1 Enumeration of the Number of the Candidates

It was shown that the proposed mathematical expression
enables us not only to model but also to construct the reac-

tion scheme easily at least for the simplest case. The most
important thing is that information on phase relations, es-
pecially reaction temperatures, can be taken into account for
the construction of the reaction scheme through this
method. Although this has been accomplished for the es-
tablishment of various phase diagrams by hand, the advan-
tage of the proposed method will be realized when the num-
ber of candidates for the reaction scheme of the simplest
ternary phase diagram with n of binary invariant reactions is
evaluated.

If there is no information on phase equilibria related to
the invariant reactions, all kinds of triangulated patterns
must be generated for a ternary phase diagram to provide a
hypothetical reaction scheme. There is a large number of
ways to triangulate a polygon, and each of the triangulated
patterns includes various kinds of the adjacency matrices R
as candidates for the reaction scheme. The number of tri-
angulation patterns of nth polygon is known as Catharan
number, D, expressed by [1983POL]:

D = �
s=3

n �4s − 10

s − 1 � = �2

2��6

3� � � � �4n − 10

n − 1 � (Eq 4)

Each of the triangulated patterns corresponds to a par-
ticular graph with (4n − 5) vertices connected by (4n − 6)
edges. By orienting each edge in a systematic manner, all

Fig. 5 (a) Example of a ternary phase diagram with 8 of binary
invariant reactions with no ternary compound. (b) A ternary phase
diagram transformed geometrically to an 8th convex polygon, i.e.,
an octagon. (c) Examples of triangulated patterns of an octagon.

Fig. 6 (a) Schematic drawing of a ternary phase diagram with a
ternary compound and (b) corresponding polygon and some ex-
amples of triangulated patterns
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hypothetical reaction schemes can be provided and then
easily expressed in the form of the adjacency matrix. There-
fore, there are 2(4n−6) oriented graphs for each of the trian-
gulation patterns. On the other hand, as the combination of
flow lines at a ternary invariant reaction, three monovari-
ants, each of which includes one liquid phase, are not al-
lowed to flow out from an invariant reaction because it
corresponds to the case represented by Fig. 1(d). Moreover,
pseudobinary reactions also must consist of arrows having a
suitable orientation. The number of candidates including
these forbidden invariant reactions are, however, not so
large compared with 2(4n−6), and these can be expelled by
applying suitable rules.

Although some of the adjacency matrices R may include
some not-appropriate reactions, the total number of hypo-
thetical reaction schemes, P, can be expressed:

P = D × �2�4n−6�� = �
s=3

n �4s − 10

s − 1 � × 2�4n−6� (Eq 5)

Table 1 shows D, 2(4n−6), and P as functions of n. With
increasing n, P increases abruptly, and it becomes harder to
provide and examine all of the hypothetical reaction
schemes by hand. On the other hand, the mathematical
method proposed in this article enables us to handle all
candidates automatically. An important thing to note is the
present method is easily programmed for a computer. The
production method of all hypothetical adjacency matrices R
has an iterative nature, shown in Appendix 3. An adjacency
matrix R including inappropriate reactions can be excluded
by applying simple rules. The integrated adjacency matrix S
with which the examination becomes easier can be deduced
by a simple way as expressed by Eq 2 and 3. Computer
power is currently increasing rapidly, and this method can
be turned to an advantage.

Some shortcuts for the reduction of the number of can-

didates are of great help to a practical calculation. One of
them is to disregard the pseudobinary invariant reactions.
The pseudobinary invariant reactions are found only infre-
quently. This results in the large reduction of the number of
vertices, i.e., (2n − 3). The total number of the hypothetical
reaction schemes for this case, P�, is also in Table 1. P� is
much smaller than P. However, one may miss the existing
pseudobinary reactions. A pseudobinary invariant reac-
tion near the binary edge is rare, but it may change the
solidification sequence and solute distributions, which
may result in cracking of the products. Moreover, if one a
pseudobinary reaction is missed and is not taken into ac-
count, this may result in a serious disadvantage for the
evaluation of thermodynamic parameters. As pseudobinary
reactions are saddle points, they divide a reaction scheme
into several parts. The reaction temperatures of invariant
reactions neighboring a saddle point are both lower than that
of the saddle point. Therefore, information on reaction tem-

Table 1 Numbers of the candidate for a ternary
phase diagram as a function of the number of phases

n D 2(4n−6) P 2(2n−3) P�

3 1 64 64 8 8
4 2 1,024 2,048 32 64
5 5 16,384 81,920 128 640
6 14 262,144 3,670,016 512 7,168
7 42 4,194,304 176,160,768 2,048 86,016
8 132 67,108,864 8,858,370,048 8,192 1,081,344

Note: Each of the numbers of triangulation patterns of nth polygon known
as Catharan number D, combination of oriented edges 2(4n−6), and the total
of candidates for a ternary phase diagram P (� D × 2(4n−6)) are listed as
a function of the number of binary phases n for a ternary phase diagram
without ternary compounds. The total number of candidates for a ternary
phase diagram without pseudo-binary reactions, P� (� D × 2(2n−3)), is also
shown.

Fig. 7 (a) Multiplication of the adjacency matrix R and (b) corresponding oriented graph
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peratures belonging to a part of the reaction scheme cannot
be used to examine another part. This may affect a practical
examination sequence.

Other kinds of invariant reactions such as monotectic
reactions can be treated within the proposed method of this
article in terms of graph theory; however, this may require
some additional considerations. Similarly, the invariant re-
actions related only to solid phases, such as eutectoid and
peritectoid reactions, can be addressed by the present math-

ematical methods. These will be discussed soon in other
papers.

3.2 Higher-Order Multicomponent Phase Diagrams

A comment must be made on the extension of the present
method to higher-order multicomponent phase diagrams.
Although the explanation starts with ternary phase dia-
grams, essential points are common for all multicomponent

Fig. 8 Integrated adjacency matrix S corresponding to the reaction scheme shown in Fig. 2
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systems regardless of the number of components. This is
because the invariant reactions in any multicomponent
phase diagrams are connected with each other by mono-
variant reactions, the number of which is decided by the
phase rule. In a K-component system, the number of phases
coexisting at the highest order phase equilibrium is (K + 1).
Therefore, the number of mono-variant reactions connected
to an invariant reaction is:

�K + 1

K � = K + 1

The difficulty seems to lie in finding practical methods for
estimating the number of invariant reactions associated with
K-solid phase fields in the K-component system.

As mentioned above, an isothermal section of a ternary
phase diagram transformed to an nth polygon can be trian-
gulated to enumerate the number of invariant reactions. It is
guaranteed by the correspondence of the spatial configura-
tion of a next-highest order equilibrium, which is a three-
phase equilibrium, to a simplex in the dimensional space of
concern, which is a triangle in two-dimensional space. A
quaternary phase diagram at a certain temperature is gener-
ally displayed by a tetrahedron in three-dimensional space.
It corresponds to an isothermal section of a ternary system.
The quaternary phase diagram at a certain temperature con-
sists of various kinds of tetrahedrons composed of four
phases at their corners. These tetrahedrons correspond to the
monovariant lines in the quaternary systems. To count the
number of quaternary invariant reactions, a way should be
proposed for dividing an nth convex polyhedron, which
models a quaternary phase diagram into a number of tetra-
hedrons, or “tetrahedrization.” Besides, through an analogy,
simplices in (K-1)-dimensional space through a simplicial
decomposition, i.e., a triangulation in (K-1)-dimensional
space, enable ones to treat higher-order multicomponent
phase diagrams with K components (K-component system)
in the same manner as that described here. This extended
idea still has its basis only in the relationship between the
phase rule and geometry.

4. Concluding Remarks

A mathematical expression of the reaction scheme of a
ternary phase diagram is proposed in terms of graph theory.
It was shown that an adjacency matrix R for an oriented
graph represents a reaction scheme. An integrated adjacency
matrix S provided by matrix operation of an adjacency ma-
trix R represents relations among invariant reaction tem-
peratures of a corresponding reaction scheme.

The size of the adjacency matrix is expressed as a func-
tion of the numbers of binary and ternary phases in a ternary
phase diagram of concern. Then the number of hypothetical
reaction schemes is derived by the Catheran number D and
a concept of the oriented graph. Although the total number
of hypothetical reaction schemes P increases abruptly with
increasing the number of binary phases n the present
method provides all of the candidates in the form of the

adjacency matrix R in a systematic manner. Moreover the
integrated adjacency matrix S can be used to examine the
adjacency matrix R by comparison with experimental re-
sults including binary phase diagram data. The proposed
method will provide a better prospect for the construction of
higher-order multicomponent phase diagram based on ex-
perimental work.
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Appendix 1. The Number of Triangles in a
Triangulated Polygon without Points:
Futura’s Application of Euler’s
Theorem

It was shown by Furuta that the triangulation of an nth
convex polygon can be considered as follows [1997Fur].
According to Euler’s theorem on polyhedra:

g − h + v � 1 (Eq A1.1)

where g is the number of points, h the number of sides and
diagonal lines, and v the number of faces. In this case, the
shapes are triangles. In the nth convex polygon, g is n and
h is the sum of sides n and diagonal lines d. Therefore

n − (n + d) + v � 1 (Eq A1.2)

Then

−d + v � 1 (Eq A1.3)

Each face has three edges, which are counted twice when
they are diagonal lines and once when they are sides. There-
fore,

3v � 2d + n (Eq A1.4)

Then

v = n − 2 (Eq A1.5)

and

d = n − 3 (Eq A1.6)

v corresponds to the number of triangles in the polygon.
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Appendix 2. Number of Triangles in a Triangulated
Polygon with Points Inside

Furuta showed the extension of the above discussion to
the triangulation of an nth convex polygon with m of points
inside [1997Fur]. As the number of points is (n + m):

(n + m) − (n + d) + v � 1 (Eq A2.1)

Then

m − d + v � 1 (Eq A2.2)

From Eq A1.4, we can obtain the results:

v = 2m + n − 2 (Eq A2.3)

and

d = 3m + n − 3 (Eq A2.4)

Appendix 3. Systematic Method for Generating All
Hypothetical Reaction Schemes in the
Form of the Adjacency Matrix R

A3.1 Concept of Nonoriented Graph for the Enumeration of
Triangulated Polygons

In the text, an adjacency matrix R of [(4n − 5) × (4n − 5)]
is filled with (4n − 6) of numeral 1, and the rest are all
numeral 0 to represent a certain reaction scheme. It was also
shown that all hypothetical reaction schemes can be pro-
vided by filling each of the aij by (4n − 6) of numeral 1. In
this section, a practical method based on a concept on non-
oriented graph is described.

Figure A3-1 shows the nonoriented form of the reaction
scheme in Fig. 2. Each of the edges has no orientation, and
the relationship between vertices can be described by a ma-
trix called an adjacency matrix M, an expression similar to
that for an oriented graph. It is also a square array with
elements assigned numeral 0 or numeral 1, in which aij �
1 defines that vertex i is connected to vertex j by one edge,
while aij � 0 does that vertices i and j have no common
edge connecting each other. As aij � aji, the adjacency
matrix M is a symmetric matrix for a nonoriented graph.
This form of matrix is used to represent interconnected ver-
tices in a triangulated nth polygon. As discussed in Appen-
dices 1 and 2, the number of sides, diagonal lines, and
triangles for any kind of triangulated nth polygon are n, (n
− 3), and (n − 2), respectively. Therefore, the number of
vertices is always (4n − 5) for any kind of nth polygon.

To describe the relation among (4n − 5) vertices, an
adjacency matrix M of [(4n − 5) × (4n − 5)] for a nonori-
ented graph should be considered. Let the vertices No. 1 to
n correspond to binary invariant reactions, No. (n + 1) to (3n
− 3) to pseudobinary invariant reactions, and No. (3n − 2) to

(4n − 5) to ternary invariant reactions in the numerical or-
der. As all of the pseudobinary invariant reactions are con-
nected to two of the end of edges, the number of edges is
twice as many as that of pseudobinary invariant reactions.
Therefore, this relationship can be treated as a graph with
(4n − 5) vertices connected by 2 × (n + n − 3)� (4n − 6)
edges. The connections between two vertices corresponding
to ternary invariant reactions through a vertex correspond-
ing to a pseudobinary invariant reaction represent a con-
struction of a polygon from triangles. Thus, the enumeration
of all kinds of nonoriented graph means the enumeration of
all kinds of triangulated patterns of a certain polygon.

The interconnection of vertices in a triangulated ternary
phase diagram is described in a form of an adjacency matrix
M as follows: Each of the vertices No. 1 to n is an endpoint
of only one edge connected with one of the vertices No.
(n + 1) to 2n, i.e., pseudobinary invariant reactions. Simi-
larly, the vertices No. (2n + 1) to (3n − 3) are the endpoint
of two edges connected with vertices No. (3n − 2) to (4n −
5), and vertices No. (3n − 2) to No. (4n − 5) are that of three
edges connected with vertices No. (n + 1) to No. (3n−3).
Because an adjacency matrix M for a nonoriented graph is
symmetric, one should take only submatrices A, B, and C
into account for the representation and enumeration, as
shown in Fig. A3-2, where tA, tB, and tC are transpositions
of submatrices A, B, and C, respectively. Figure A3-2 shows
a matrix M for a nonoriented graph shown in Fig. A3-1.
Submatrix A represents the relations between the vertices
No. 1 to n (No. 8 in Fig. A3-2) and the vertices No. (n + 1)
(No. 9 in Fig. A3-2) to No. (2n) (No. 16 in Fig. A3-2).
Submatrix B represents the relations between the vertices
No. (n + 1) (No. 9 in Fig. A3-2) to No. (2n) (No. 16 in Fig.

Fig. A3.1 Network of flow lines and vertices, which correspond
to ternary, binary, and pseudobinary invariant reactions expressed
without the information on invariant reaction temperatures
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A3-2) and the vertices No. (3n − 2) (No. 22 in Fig. A3-2) to
No. (4n − 5) (No. 27 in Fig. A3-2). Submatrix C represents
the relations between the vertices No. (2n + 1) (No. 17 in
Fig. A3-2) to No. (3n − 3) (No. 21 in Fig. A3-2) and the

vertices No. (3n − 2) (No. 22 in Fig. A3-2) to No. (4n − 5)
(No. 27 in Fig. A3-2)—in other words, relations between
diagonal lines and triangles. In this treatment, each row of
the submatrices A and B must have one numeral 1 element

Fig. A3.2 Adjacency matrix expression of the reaction scheme in the form of the nonoriented graph
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and the other elements left must all be numeral 0. Similarly
two numeral 1s appear in each row of the submatrix C,
which represents each of diagonal lines is connected to two
of triangles. Besides, the number of the numeral 1 appearing
in each column of submatrix A must be one. Moreover, the
number of the numeral 1 appearing in each column through
submatrices B and C must be three, which represents each of
the ternary invariant reactions, is connected to pseudobinary
invariant reactions by three edges. It can be seen that this
configuration is generated from only the rule of connection

of monovariant lines in a ternary phase diagram without the
information on invariant reaction temperatures. It can be
easily pointed out that, by enumerating all patterns of the
submatrices A, B, and C with the rule mentioned, every
neighboring pattern of vertices that corresponds to each tri-
angulated pattern of a certain ternary phase diagram can be
enumerated. To avoid double counting and exclude equiva-
lents, the filling in the entries in the submatrices A, B, and
C with numerals 1 and 0 must be carried out in a systematic
manner.

Fig. A3.3 Adjacency matrix expression of the reaction scheme in the form of the oriented graph
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A3-2. Generation of Oriented Graphs from a Non-oriented
Graph

The reaction scheme presents the relation among invari-
ant reaction temperatures by oriented lines connected at two
invariant reactions to show which reaction occurs at a
higher temperature. To model the reaction scheme consis-
tently with information on reaction temperatures, the con-
cept of an oriented graph was introduced in the text.

Here a method is described to derive all candidates for
the reaction scheme in the form of the oriented graph. The
nonoriented graph represents only a neighboring pattern of
vertices concerning to a certain triangulation pattern of an
nth polygon. By orienting each edge of a corresponding
nonoriented graph individually, all candidates will be pro-
duced. In the adjacency matrix M for a non-oriented graph,
aij � aji, and the adjacency matrix M is a symmetrical
matrix. The orienting of edges means to select either aij �
1 or aji � 1 in the adjacency matrix R for an oriented graph.
Mathematically, the orienting of a non-oriented graph can
be done by dividing submatrices A, B, and C into two parts
consisting of numerals 1 and/or 0 individually:

A � A1 + A2 (Eq A3.1)

B � B1 + B2 (Eq A3.2)

and

C � C1 + C2 (Eq A3.3)

In this case, tA2, tB2, and tC2, which are transpositions of
newly introduced submatrices A2, B2, and C2, respectively,
are used instead of tA, tB, and tC, as shown in Fig. A3-3.
This mathematical treatment provides all candidates for the
reaction scheme, which is referred to as a “hypothetical”
reaction scheme, in the form of an adjacency matrix R for a
certain oriented graph.

Let us summarize the enumeration method for hypotheti-

cal reaction schemes. It involves two steps. In the first step,
submatrices A, B, and C in a form of nonoriented graph are
derived for the enumeration of the triangulation patterns.
Then in the second step, A1, A2, B1, B2, C1, and C2 are
derived from A, B, and C. Note that in each of the above
steps, the same process must be repeated until all the sub-
matrices can be obtained for further inspection. This itera-
tive nature of the method allows a computer to be pro-
grammed to provide all hypothetical reaction schemes.
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